A Cheeger-type inequality on simplicial complexes
نویسندگان
چکیده
منابع مشابه
A Cheeger-Type Inequality on Simplicial Complexes
In this paper, we consider a variation on Cheeger numbers related to the coboundary expanders recently defined by Dotterer and Kahle. A Cheeger-type inequality is proved, which is similar to a result on graphs due to Fan Chung. This inequality is then used to study the relationship between coboundary expanders on simplicial complexes and their corresponding eigenvalues, complementing and extend...
متن کاملA Generalized Cheeger Inequality
where capG(S, S̄) is the total weight of the edges crossing from S to S̄ = V − S. We show that the minimum generalized eigenvalue λ(LG, LH) of the pair of Laplacians LG and LH satisfies λ(LG, LH) ≥ φ(G,H)φ(G)/8, where φ(G) is the usual conductance of G. A generalized cut that meets this bound can be obtained from the generalized eigenvector corresponding to λ(LG, LH). The inequality complements a...
متن کاملSimplicial Complexes of Whisker Type
Let I ⊂ K[x1, . . . , xn] be a zero-dimensional monomial ideal, and ∆(I) be the simplicial complex whose Stanley–Reisner ideal is the polarization of I. It follows from a result of Soleyman Jahan that ∆(I) is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that ∆(I) is even vertex decomposable. The ideal L(I), which is defined to be the Sta...
متن کاملA duality on simplicial complexes
The usual definition of finite simplicial complex is a set of non-empty subsets of a finite set, closed under non-empty subset formation. For our purposes here, we will omit the non-emptiness and define a finite simplicial complex to be a down-closed subset of the set of subsets of a finite set. We can, and will suppose that the finite set is the integers 0,. . . ,N . We will denote by K the se...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2014
ISSN: 0196-8858
DOI: 10.1016/j.aam.2014.01.002